Segmentation of Scanned Insect Footprints Using ART2 for Threshold Selection
نویسندگان
چکیده
In a process of insect footprint recognition, footprint segments need to be extracted from scanned insect footprints in order to find out appropriate features for classification. In this paper, we use a clustering method in a preprocessing stage for extraction of insect footprint segments. In general, sizes and strides of footprints may be different according to type and size of an insect for recognition. Therefore we propose a method for insect footprint segment extraction using an improved ART2 algorithm regardless of size and stride of footprint pattern. In the improved ART2 algorithm, an initial threshold value for clustering is determined automatically using the contour shape of the graph created by accumulating distances between all the spots within a binarized footprint pattern image. In the experimental results, applying the proposed method to two kinds of insect footprint patterns, we illustrate that clustering is accomplished correctly.
منابع مشابه
Performance Evaluation of Binarizations of Scanned Insect Footprints
The paper compares six conventional binarization methods for the special purpose of subsequent analysis of scanned insect footprints. We introduce a new performance criterion for performance evaluation. The six different binarization methods are selected from different methodologically categories, and the proposed performance criterion is related to the specific characteristics of insect footpr...
متن کاملIdentification and Prioritization of Accident-Prone Segments using International Roughness Index
During last decades, owing to the increase in a number of vehicles, the rate of accident occurrence grows significantly. Efforts must be made to provide efficient tools to prioritize segments requiring safety improvement and identify influential factors on accidents. This objective of the research was to determine the safety oriented threshold of International Roughness Index (IRI) to recognize...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملDesigning an Algorithm for Cancerous Tissue Segmentation Using Adaptive K-means Cluttering and Discrete Wavelet Transform
Background: Breast cancer is currently one of the leading causes of death among women worldwide. The diagnosis and separation of cancerous tumors in mammographic imagesrequire accuracy, experience and time, and it has always posed itself as a major challenge to the radiologists and physicians. Objective: This paper proposes a new algorithm which draws on discrete wavelet transform and adaptive ...
متن کاملIntegration of ART2 Neural Network and Fuzzy Sets Theory for Market Segmentation
In order to simulate human beings’ thinking, this study is dedicated to proposing a novel fuzzy neural network (FNN) to cluster the fuzzy data being collected from the fuzzy questionnaires. The proposed FNN is the integration of adaptive resonance theory 2 (ART2) neural network and fuzzy sets theory. It can handle the fuzzy inputs as well as the fuzzy weights. A case study for mobile phone ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007